
CSE 332: Data Structures and Parallelism

Section 8: Parallel Prefix

0. Parallel Prefix Sum
Given input array [8, 9, 6, 3, 2, 5, 7, 4], output an array such that each
output[i] = sum(array[0], array[1], ..., array[i]).

Use the Parallel Prefix Sum algorithm from lecture. Show the intermediate steps. Draw
the input and output arrays, and for each step, show the tree of the recursive task
objects that would be created (where a node’s child is for two problems of half the size)
and the fields each node needs. Do not use a sequential cut-off.

First pass: fill out the sum field starting from leaf nodes to the top by starting with each leaf node’s value as its
sum, then combining parallel subproblems by taking the sum of each side. This can be calculated with the
following expressions:

leaves[i].sum = input[i]
p.sum = p.left.sum + p.right.sum

Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent the sum
of the prefix of this subproblem’s range, that is, the sum of everything to the left of this node. This can
calculated with the following expressions:

https://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf#page=36


p.right.FL = p.FL + p.left.sum
p.left.FL = p.FL

Then fill the output array with the sum and FL fields at the leaf node level:
output[i] = leaves[i].FL + input[i]



1. Parallel Prefix FindMin
Given input array [8, 9, 6, 3, 2, 5, 7, 4], output an array such that each
output[i] = min(array[0], array[1], ..., array[i]). Show all steps, as
above.

First pass: fill out the min field starting from leaf nodes to the top by starting with each leaf node’s value as its
min, then combining parallel subproblems by taking the min of each side. This can be calculated with the
following expressions:

leaves[i].min = input[i]
p.min = min(p.left.min, p.right.min)

Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent the
minimum value of the prefix of this subproblem’s range, that is, the min of everything to the left of this node.
This can calculated with the following expressions:

p.right.FL = min(p.FL, p.left.min)
p.left.FL = p.FL

Then fill the output array with the min and FL fields at the leaf node level:
output[i] = min(leaves[i].FL, input[i])



2. Work it Out [the Span]
a) Define work and span.

Work - how long the running time of a program would be with just one
processor
Span - the running time with an infinite number of processors

b) How do we calculate work and span?

Work - sum all the work done by each processor
Span - calculate the longest dependence chain (the longest ’branch’ in the
parallel ’tree’)

c) Does adding more processors affect the work or span?

Neither - both work and span are defined by a fixed number of processors (1
for work and infinity for
span) so adding more processors won’t affect them



3. Parallel Pack
Given input array [12, 5, -8, 34, 6, 10, 2, 7], output an array that contains
only the elements that are less than 10.

Use the Parallel Pack algorithm from lecture. Show the intermediate steps. Draw the
input and output arrays, and for each step, show the tree of the recursive task objects
that would be created (where a node’s child is for two problems of half the size) and the
fields each node needs. Do not use a sequential cut-off.

Step 1: parallel map to compute bits array such that bits[i] = 1 if input[i] < 10

Step 2: parallel prefix sum to on bits array
- First pass: fill out the sum field starting from leaf nodes to the top by starting with each leaf node’s value

as its sum, then combining parallel subproblems by taking the sum of each side. This can be calculated
with the following expressions:

- leaves[i].sum = bits[i]
- p.sum = p.left.sum + p.right.sum

https://courses.cs.washington.edu/courses/cse332/23wi/lectures/cse332-23wi-lec16-PrefixAndSorting.pdf#page=16


- Second pass: fill out the FL (“from left”) field starting from the top down to the leaf nodes to represent
the sum of the prefix of this subproblem’s range, that is, the sum of everything to the left of this node.
This can calculated with the following expressions:

- p.right.FL = p.FL + p.left.sum
- p.left.FL = p.FL
- Then fill bitsum array with the sum and FL fields at the leaf node level:

- bitsum[i] = leaves[i].FL + bits[i]



Step 3: parallel map to produce output array
- Create output array of size bitsum[n-1] where n is the size of input array.
- Fill out output array: if bits[i] == 1, then add input[i] to output array at index bitsum[i] - 1




